

Boosting the Performance of Plug-and-Play via Denoiser Scaling

Xiaojian Xu¹,

Jiaming Liu²,

Yu Sun¹,

Brendt Wohlberg³, Ulugbek S. Kamilov^{1,2}

^{1.} Department of Computer Science & Engineering, Washington University in St. Louis

^{2.} Department of Electrical & Systems Engineering, Washington University in St. Louis.

^{3.} Theoretical Division, Los Alamos National Laboratory

Image acquisition

• The acquisition of high-quality images is important but hard.

Imaging as an inverse problem

Acquisition procedure: generate y from x

Inverse problem: recover \boldsymbol{x} from \boldsymbol{y}

Imaging as a regularized optimization task

• Formulating it as a regularized optimization task

$$\widehat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{arg\,min}} \{ g(\boldsymbol{x}) + \underset{\boldsymbol{x}}{\operatorname{prior/regularizer}} \}$$

Example: Fast iterative shrinkage/thresholding algorithm (FISTA) [Nesterov'13]& Alternating direction method of multipliers (ADMM) [Boyd'10]

FISTA

$$egin{aligned} oldsymbol{z}^k &\leftarrow oldsymbol{s}^{k-1} - \gamma
abla g(oldsymbol{s}^{k-1}) \ oldsymbol{x}^k &\leftarrow \operatorname{prox}_{\gamma h}(oldsymbol{z}^k) \ oldsymbol{s}^k &\leftarrow oldsymbol{x}^k + ((q_{k-1}-1)/q_k)(oldsymbol{x}^k - oldsymbol{x}^{k-1}) \end{aligned}$$

ADMM

$$egin{aligned} oldsymbol{z}^k &\leftarrow \mathsf{prox}_{\gamma g}(oldsymbol{x}^{k-1} - oldsymbol{s}^{k-1}) \ oldsymbol{x}^k &\leftarrow \mathsf{prox}_{\gamma h}(oldsymbol{z}^k + oldsymbol{s}^{k-1}) \ oldsymbol{s}^k &\leftarrow oldsymbol{s}^{k-1} + (oldsymbol{z}^k - oldsymbol{x}^k) \end{aligned}$$

Proximal algorithms

• Let's take a closer look at these two proximal algorithms

FISTA ADMM

$\boldsymbol{z}^k \leftarrow \boldsymbol{s}^{k-1} - \gamma \nabla g(\boldsymbol{s}^{k-1})$	increase data consistency	$\boldsymbol{z}^k \leftarrow prox_{\gamma g}(\boldsymbol{x}^{k-1} - \boldsymbol{s}^{k-1})$
$oldsymbol{x}^k \leftarrow prox_{\gamma h}(oldsymbol{z}^k)$	reduce noise	$oldsymbol{x}^k \leftarrow prox_{\gamma h}(oldsymbol{z}^k + oldsymbol{s}^{k-1})$
$s^k \leftarrow x^k + ((q_{k-1} - 1)/q_k)(x^k - 1)$	$-x^{k-1})$	$oldsymbol{s}^k \leftarrow oldsymbol{s}^{k-1} + (oldsymbol{z}^k - oldsymbol{x}^k)$

Proximal algorithms

• Let's take a closer look at these two proximal algorithms

FISTA	ADMM
-------	------

$\boldsymbol{z}^k \leftarrow \boldsymbol{s}^{k-1} - \gamma \nabla g(\boldsymbol{s}^{k-1})$	increase data consistency	$\boldsymbol{z}^k \leftarrow prox_{\gamma g}(\boldsymbol{x}^{k-1} - \boldsymbol{s}^{k-1})$
$oldsymbol{x}^k \leftarrow prox_{\gamma h}(oldsymbol{z}^k)$	reduce noise	$oldsymbol{x}^k \leftarrow prox_{\gamma h}(oldsymbol{z}^k + oldsymbol{s}^{k-1})$
$s^k \leftarrow x^k + ((q_{k-1} - 1)/q_k)(x^k - 1)$	$-oldsymbol{x}^{k-1})$	$oldsymbol{s}^k \leftarrow oldsymbol{s}^{k-1} + (oldsymbol{z}^k - oldsymbol{x}^k)$

Plug and Play Prior (PnP) [Venkat'13]:

simply replace the proximal map with other denoisers $D_{\sigma}!$

$$\mathsf{prox}_{\gamma h} \Rightarrow \mathsf{D}_{\sigma}$$

where $\sigma \ge 0$ refers to denoising strength.

PnP: Incorporating a denoiser in the optimization

any off-the-shelf

image denoiser

• Plug-and-Play (PnP) embraces off-the-shelf image denoisers

PnP-FISTA

$$\boldsymbol{z}^k = \boldsymbol{s}^{k-1} - \gamma \nabla g(\boldsymbol{s}^{k-1})$$

$$oldsymbol{x}^k = \mathsf{D}_{oldsymbol{\sigma}}(oldsymbol{z}^k)$$

$$s^k = x^k + ((q_{k-1} - 1)/q_k)(x^k - x^{k-1})$$

PnP-ADMM

$$oldsymbol{z}^k = \mathsf{prox}_{\gamma g}(oldsymbol{x}^{k-1} - oldsymbol{s}^{k-1})$$

$$oldsymbol{x}^k = {\color{red}\mathsf{D}_{oldsymbol{\sigma}}}(oldsymbol{z}^k + oldsymbol{s}^{k-1})$$

$$oldsymbol{s}^k = oldsymbol{s}^{k-1} + (oldsymbol{z}^k - oldsymbol{x}^k)$$

Example: D_{σ} could be a neural network

Convolutional Neural Networks

PnP: Incorporating a denoiser in the optimization

• Plug-and-Play (PnP) embraces off-the-shelf image denoisers

PnP-FISTA		PnP-ADMM
$\boldsymbol{z}^k = \boldsymbol{s}^{k-1} - \gamma \nabla g(\boldsymbol{s}^{k-1})$		$\boldsymbol{z}^k = prox_{\gamma g}(\boldsymbol{x}^{k-1} - \boldsymbol{s}^{k-1})$
$oldsymbol{x}^k = D_{oldsymbol{\sigma}}(oldsymbol{z}^k)$	$\sigma = ?$	$oldsymbol{x}^k = oldsymbol{D}_{oldsymbol{\sigma}}(oldsymbol{z}^k + oldsymbol{s}^{k-1})$
$m{s}^k = m{x}^k + ((q_{k-1} - 1)/q_k)(m{x}^k - m{x}^{k-1})$		$\boldsymbol{s}^k = \boldsymbol{s}^{k-1} + (\boldsymbol{z}^k - \boldsymbol{x}^k)$

Many CNNs denoisers do not have a tunable parameter for the noise standard deviation!

PnP: Incorporating a denoiser in the optimization

• Plug-and-Play (PnP) embraces off-the-shelf image denoisers

PnP-FISTA		PnP-ADMM
$oldsymbol{z}^k = oldsymbol{s}^{k-1} - \gamma abla g(oldsymbol{s}^{k-1})$		$\boldsymbol{z}^k = prox_{\gamma g}(\boldsymbol{x}^{k-1} - \boldsymbol{s}^{k-1})$
$oldsymbol{x}^k = D_{oldsymbol{\sigma}}(oldsymbol{z}^k)$	$\sigma = ?$	$oldsymbol{x}^k = D_{oldsymbol{\sigma}}(oldsymbol{z}^k + oldsymbol{s}^{k-1})$
$s^k = x^k + ((q_{k-1} - 1)/q_k)(x^k - x^{k-1})$		$oldsymbol{s}^k = oldsymbol{s}^{k-1} + (oldsymbol{z}^k - oldsymbol{x}^k)$

- Previous solution: denoiser selection
 - **②** Idea: Training multiple CNN instances and select the one that works best.
 - ◆ Issues: Requires training multiple CNN instances and leads to suboptimal performance.

Proposed denoiser scaling technique

• Plug-and-Play (PnP) embraces off-the-shelf image denoisers

PnP-FISTA		PnP-ADMM
$\boldsymbol{z}^k = \boldsymbol{s}^{k-1} - \gamma \nabla g(\boldsymbol{s}^{k-1})$		$\boldsymbol{z}^k = prox_{\gamma g}(\boldsymbol{x}^{k-1} - \boldsymbol{s}^{k-1})$
$oldsymbol{x}^k = D_{oldsymbol{\sigma}}(oldsymbol{z}^k)$	$\sigma = ?$	$oldsymbol{x}^k = {\mathsf D}_{oldsymbol{\sigma}}(oldsymbol{z}^k + oldsymbol{s}^{k-1})$
$m{s}^k = m{x}^k + ((q_{k-1} - 1)/q_k)(m{x}^k - m{x}^{k-1})$		$\boldsymbol{s}^k = \boldsymbol{s}^{k-1} + (\boldsymbol{z}^k - \boldsymbol{x}^k)$

- Our proposal : denoiser scaling
 - ☼ Introduce a tunable parameter µ to adjust the denoising strength of a pre-trained CNN.

Without scaling:
$$\hat{z} = D_{\sigma}(z)$$

Denoiser scaling:
$$\hat{z} = \mu^{-1} D_{\sigma}(\mu z), \quad \mu > 0$$

Performance of denoiser scaling

• CNN trained on noise level $\sigma = 20$, applied on noise level $\sigma = 30$, difference $\Delta_{\sigma} = 10$.

Noisy image:

Without scaling: $\widehat{z} = D_{\sigma}(z)$

With scaling:

Performance of denoiser scaling

• CNN trained on noise level $\sigma = 20$, applied on noise level $\sigma = 30$, difference $\Delta_{\sigma} = 10$.

Performance of denoiser scaling

• CNN trained on noise level $\sigma = 20$, applied on noise level $\sigma = 40$, difference $\Delta_{\sigma} = 20$.

Theoretical analysis of denoiser scaling

- Denoiser scaling is proved to have the following properties:
 - When the denoiser is a minimum mean-squared error (MMSE) denoiser, adjusting μ is equivalent to scale the variance of AWGN by μ^{-2} in the MMSE estimation.
 - When denoiser is a proximal map $\operatorname{prox}_{\lambda h}(z) := \arg\min\{\frac{1}{2}||x-z||_2^2 + \lambda h(x)\}$, where regularizer $h(\cdot)$ is 1-homogeneous with $h(\mu \cdot) = \mu \stackrel{x}{h}(\cdot)$, adjusting μ is equivalent to adjusting the weighting parameter of h.

PnP algorithms with denoiser scaling

• PnP algorithms with denoiser scaling

PnP-FISTA

$$egin{align} oldsymbol{z}^k &= oldsymbol{s}^{k-1} - \gamma
abla g(oldsymbol{s}^{k-1}) \ oldsymbol{x}^k &= \mathsf{D}_{\sigma}(oldsymbol{z}^k) \ oldsymbol{s}^k &= oldsymbol{x}^k + ((q_{k-1}-1)/q_k)(oldsymbol{x}^k - oldsymbol{x}^{k-1}) \ \end{pmatrix}$$

Scaled PnP-FISTA

$$egin{aligned} oldsymbol{z}^k &= oldsymbol{s}^{k-1} - \gamma
abla g(oldsymbol{s}^{k-1}) \ oldsymbol{x}^k &= oldsymbol{\mu}^{-1} \mathsf{D}_{\sigma}(oldsymbol{\mu} oldsymbol{z}^k) \ oldsymbol{s}^k &= oldsymbol{x}^k + ((q_{k-1}-1)/q_k)(oldsymbol{x}^k - oldsymbol{x}^{k-1}) \end{aligned}$$

PnP-ADMM

$$egin{aligned} oldsymbol{z}^k &= \mathsf{prox}_{\gamma g}(oldsymbol{x}^{k-1} - oldsymbol{s}^{k-1}) \ oldsymbol{x}^k &= \mathsf{D}_{\sigma}((oldsymbol{z}^k + oldsymbol{s}^{k-1})) \ oldsymbol{s}^k &= oldsymbol{s}^{k-1} + (oldsymbol{z}^k - oldsymbol{x}^k) \end{aligned}$$

Scaled PnP-ADMM

$$egin{aligned} oldsymbol{z}^k &= \mathsf{prox}_{\gamma g}(oldsymbol{x}^{k-1} - oldsymbol{s}^{k-1}) \ oldsymbol{x}^k &= oldsymbol{\mu}^{-1} \mathsf{D}_{\sigma}(oldsymbol{\mu}(oldsymbol{z}^k + oldsymbol{s}^{k-1})) \ oldsymbol{s}^k &= oldsymbol{s}^{k-1} + (oldsymbol{z}^k - oldsymbol{x}^k) \end{aligned}$$

Inverse problem examples

• Image Super-resolution (SR) and Magnetic resonance imaging (MRI) problem

Scaling performance in image SR problem

• Scaling technique can sharpen the blurry edges caused by the suboptimal denoiser.

Scaling performance in MRI problem

• Scaling technique can alleviate the artifacts caused by the suboptimal denoiser.

Conclusion

- Summary of our talk
 - **™** We proposed a denoiser scaling technique that can help with the denoising strength tuning especially for CNN type of denoisers.
 - **♦ We showed** that denoiser scaling can effectively boost the performance of PnP algorithms and achieve the optimal results.

Thanks!

