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Image acquisition 

• The acquisition of  high-quality images is important but hard.

Unknown target image Corrupted observation

Image reconstruction
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Imaging as an inverse problem

Forward model Noise Corrupted observation
y = H(x) + e

Unknown target image 
x

Acquisition procedure: generate y from x

Inverse problem: recover x from y
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Imaging as a regularized optimization task 

• Formulating it as a regularized optimization task

data-fidelity prior/regularizer
bx=argmin

x
{g(x)+h(x)}

FISTA ADMM

Example: Fast iterative shrinkage/thresholding algorithm (FISTA) [Nesterov’13]&         
Alternating direction method of  multipliers (ADMM) [Boyd’10]

zk  sk�1 � �rg(sk�1)

xk  prox�h(z
k)

sk  xk + ((qk�1 � 1)/qk)(x
k � xk�1)

zk  prox�g(x
k�1 � sk�1)

xk  prox�h(z
k + sk�1)

sk  sk�1 + (zk � xk)
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Proximal algorithms

FISTA

• Let’s take a closer look at these two proximal algorithms 

increase data consistency 

reduce noise

zk  prox�g(x
k�1 � sk�1)

xk  prox�h(z
k + sk�1)

sk  sk�1 + (zk � xk)

zk  sk�1 � �rg(sk�1)

xk  prox�h(z
k)

sk  xk + ((qk�1 � 1)/qk)(x
k � xk�1)

ADMM

model
bx=argmin

x
{g(x)+h(x)}

prior
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Proximal algorithms

• Let’s take a closer look at these two proximal algorithms 

FISTA

increase data consistency 

reduce noise

zk  prox�g(x
k�1 � sk�1)

xk  prox�h(z
k + sk�1)

sk  sk�1 + (zk � xk)

zk  sk�1 � �rg(sk�1)

xk  prox�h(z
k)

sk  xk + ((qk�1 � 1)/qk)(x
k � xk�1)

ADMM

Plug and Play Prior (PnP) [Venkat’13]: 
simply replace the proximal map with other denoisers D𝜎!

prox�h ) D�

where σ ≥ 0 refers to denoising strength.

model
bx=argmin

x
{g(x)+h(x)}

prior
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PnP: Incorporating a denoiser in the optimization

• Plug-and-Play (PnP) embraces off-the-shelf  image denoisers 

PnP-FISTA PnP-ADMM

any off-the-shelf  
image denoiser

zk = sk�1 � �rg(sk�1)

xk = D�(z
k)

sk = xk + ((qk�1 � 1)/qk)(x
k � xk�1)

zk = prox�g(x
k�1 � sk�1)

xk = D�(z
k + sk�1)

sk = sk�1 + (zk � xk)

Example: D𝜎 could be a neural network 
Convolutional Neural Networks 

(CNNs)
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PnP: Incorporating a denoiser in the optimization

• Plug-and-Play (PnP) embraces off-the-shelf  image denoisers 

PnP-FISTA PnP-ADMM

zk = sk�1 � �rg(sk�1)

xk = D�(z
k)

sk = xk + ((qk�1 � 1)/qk)(x
k � xk�1)

zk = prox�g(x
k�1 � sk�1)

xk = D�(z
k + sk�1)

sk = sk�1 + (zk � xk)

� =?

Many CNNs denoisers do not have a tunable parameter for the noise standard deviation!
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PnP: Incorporating a denoiser in the optimization

• Plug-and-Play (PnP) embraces off-the-shelf  image denoisers 

PnP-FISTA PnP-ADMM

zk = sk�1 � �rg(sk�1)

xk = D�(z
k)

sk = xk + ((qk�1 � 1)/qk)(x
k � xk�1)

zk = prox�g(x
k�1 � sk�1)

xk = D�(z
k + sk�1)

sk = sk�1 + (zk � xk)

� =?

• Previous solution : denoiser selection

✪ Idea: Training multiple CNN instances and select the one that works best. 
✪ Issues: Requires training multiple CNN instances and leads to suboptimal performance.
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Proposed denoiser scaling technique

• Plug-and-Play (PnP) embraces off-the-shelf  image denoisers 

PnP-FISTA PnP-ADMM

zk = sk�1 � �rg(sk�1)

xk = D�(z
k)

sk = xk + ((qk�1 � 1)/qk)(x
k � xk�1)

zk = prox�g(x
k�1 � sk�1)

xk = D�(z
k + sk�1)

sk = sk�1 + (zk � xk)

� =?

• Our proposal : denoiser scaling

✪ Introduce a tunable parameter µ to adjust  the denoising strength of  a pre-trained CNN.

Without scaling: 
Denoiser scaling: bz = µ�1D�(µz), µ > 0
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Performance of  denoiser scaling

bz = D�(z)
Without scaling: 

• CNN trained on noise level 𝜎 = 20, applied on noise level 𝜎 = 30, difference ∆! =10.

Corrupted (SNR = 9.58 dB)

Noisy image:
z

With scaling: 
bz = µ�1D�(µz)
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Performance of  denoiser scaling

Ground truth

3.61 dB 0.04 dB

Corrupted image(𝜎 = 30)

12.22 dB

Unscaled

19.86 dB

Scaled

23.47 dB

Optimized

23.51 dB

• CNN trained on noise level 𝜎 = 20, applied on noise level 𝜎 = 30, difference ∆! =10.

*Number written to image is signal-to-noise ratio (SNR)
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Performance of  denoiser scaling

OptimizedGround truth Corrupted image(𝜎 = 40) Unscaled Scaled

9.19 dB 14.35 dB 23.24 dB 23.38 dB

8.89 dB 0.14 dB

• CNN trained on noise level 𝜎 = 20, applied on noise level 𝜎 = 40, difference ∆! =20.
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Theoretical analysis of  denoiser scaling

• Denoiser scaling is proved to have the following properties:
✪When the denoiser is a minimum mean-squared error (MMSE) denoiser, adjusting 
µ is equivalent to scale the variance of  AWGN by µ"# in the MMSE estimation.

✪When denoiser is a proximal map                                                               , where        
regularizer h(%) is 1-homogeneous with h(µ % ) = µ h(%), adjusting µ is equivalent to 
adjusting the weighting parameter of  h.

prox�h(z) := argmin
x

{1
2
kx� zk22 + �h(x)}
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*Plots are generated with noisy image at noise level σ =  7.23
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PnP algorithms with denoiser scaling

• PnP algorithms with denoiser scaling

PnP-FISTA PnP-ADMM

)

Scaled PnP-ADMM

)

Scaled PnP-FISTA

zk = sk�1 � �rg(sk�1)

xk = µ�1D�(µz
k)

sk = xk + ((qk�1 � 1)/qk)(x
k � xk�1)

zk = prox�g(x
k�1 � sk�1)

xk = µ�1D�(µ(z
k + sk�1))

sk = sk�1 + (zk � xk)

zk = prox�g(x
k�1 � sk�1)

xk = D�((z
k + sk�1))

sk = sk�1 + (zk � xk)

zk = sk�1 � �rg(sk�1)

xk = D�(z
k)

sk = xk + ((qk�1 � 1)/qk)(x
k � xk�1)
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Inverse problem examples
• Image Super-resolution (SR) and Magnetic resonance imaging (MRI) problem

Low-resolution image

Under-sampled frequencies Clean image

SR inverse problem

MRI inverse problem

High-resolution image
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Scaling performance in image SR problem

• Scaling technique can sharpen the blurry edges caused by the suboptimal denoiser.

Unscaled CNN

17.09 dB

Scaled CNN (Ours)

17.63 dB

0.54 dB

Optimized

17.59 dB

0.04 dB 17



Scaling performance in MRI problem

• Scaling technique can alleviate the artifacts caused by the suboptimal denoiser.

Ground truth

19.98 dB

Unscaled CNN

24.07 dB

Scaled CNN (Ours)

23.67 dB

Optimized 

4.09 dB 0.4 dB 18



Conclusion

✪We proposed a denoiser scaling technique that can help with the denoising 
strength tuning especially for CNN type of  denoisers.

• Summary of  our talk

✪We showed that denoiser scaling can effectively boost the performance of  PnP 
algorithms and achieve the optimal results.
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Thanks!
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