

# Robust 3D Tomographic Imaging of the Ionospheric Electron Density

Xiaojian Xu<sup>1\*</sup>, Oussama Dhifallah<sup>2†</sup>, Hassan Mansour<sup>3</sup>, Petros T. Boufounos<sup>3</sup>, Philip V. Orlik<sup>3</sup>

<sup>1</sup>Computer Science and Engineering, Washington University in St. Louis <sup>2</sup>John Paulson School of Engineering and Applied Science, Harvard University <sup>3</sup>Mitsubishi Electric Research Laboratories, Cambridge 06/30/2020

## Background



• The ionosphere is the ionized region of the Earth's atmosphere spanning the altitudes between 60km to 1000km above the Earth's surface.



- The electrons act as a transportation medium as well as an interference channel for electromagnetic signals that are utilized by the global positioning system (GPS).
- Objective: Estimate the electron density distribution.



• Fact: Detectors only record the total electron content (TEC) along the line-of-sight (LOS)

$$TEC = \int_{rec}^{sat} N_e(\rho) d\rho,$$



- TEC is the total electron content.
- $N_e(\rho)$  denotes the electron density along the ray path connecting the receiver and satellite.



• Discretization: Divide the three-dimensional space into small grids and the approximate(TEC) given by

$$TEC = \sum_{k=1}^{n} a_k x_k,$$



- *k* is the total number of gridded boxes.
- $a_k$  denotes the length of the path in grid k.
- $x_k$  denotes the electron density in grid k.



• Discretization: Divide the three-dimensional space into small grids and the approximate(TEC) given by

$$y_i = \sum_{k=1}^n a_{ik} x_k$$



- *k* is the total number of gridded boxes.
- $a_{ik}$  denotes the length of the path i in grid k.
- $x_k$  denotes the electron density in grid k.



• 3D Model: Interpret the multiple linear combination as the matrix multiplication



- *m* denotes the total number of satellite-receiver paths.
- *n* denotes the total number of grids.

## Compute the measurements



• Low angel measurements  $y_l$ : Need to discount the proportion of the TEC measurements that originate outside of the target domain.



Low angel measurements

## Compute the measurements



• Low angel measurements y<sub>1</sub>: Assume that the GPS-TEC inside the (region-of-interest) ROI along a LOS is proportional to the TEC inside the 3D grid of the ionospheric density estimated by the NeQuick model.



Low angel measurements

$$\tilde{y}_l = y_l \left( \frac{\text{partial TEC}_{l,\text{NeQuick}}}{\text{TEC}_{l,\text{NeQuick}}} \right)^p, \ \forall \ l \in \mathcal{L}$$



• Proposed method: We formulate the problem of reconstructing the ionospheric volume as the following regularized least squares problem:

$$\widehat{\mathbf{x}} = \underset{\mathbf{x} \in \mathbb{R}^n}{\arg \min} \|\mathbf{y} - \mathbf{A} \mathbf{x}\|_2^2 + \lambda \|\mathbf{W} \mathbf{x}\|_2^2 + \gamma \sum_{q=1}^h \|\mathbf{R}_q \mathbf{x} - \mathbf{x}_q\|_2^2$$
s.t.  $\mathbf{x} \ge 0$ 

- $\mathbf{W} \in \mathbb{R}^{n \times n}$  is a constraint matrix.
- $\mathbf{x}_q$  is the electron density for a fixed latitude and longitude
- $\mathbf{R}_q$  is a binary selection matrix
- h is the number of reference points.
- $\lambda \ge 0$  and  $\gamma \ge 0$  are the regularization parameters.



• Proposed method: We formulate the problem of reconstructing the ionospheric volume as the following regularized least squares problem:

$$\widehat{\mathbf{x}} = \underset{\mathbf{x} \in \mathbb{R}^n}{\min} \frac{\|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2}{\|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2} + \lambda \|\mathbf{W}\mathbf{x}\|_2^2 + \gamma \sum_{q=1}^h \|\mathbf{R}_q\mathbf{x} - \mathbf{x}_q\|_2^2$$
data-consistency



• Proposed method: We formulate the problem of reconstructing the ionospheric volume as the following regularized least squares problem:

$$\widehat{\mathbf{x}} = \underset{\mathbf{x} \in \mathbb{R}^n}{\min} \|\mathbf{y} - \mathbf{A}_{\mathbf{x}}\|_2^2 + \lambda \|\mathbf{W}_{\mathbf{x}}\|_2^2 + \gamma \sum_{q=1}^h \|\mathbf{R}_q \mathbf{x} - \mathbf{x}_q\|_2^2$$

$$\text{coupling constrain}$$

$$(\mathbf{W}_{\mathbf{x}})_i = \sum_{k=1}^6 C_{ik}(x_i - x_{ik})$$

- $C_{ik} \ge 0$  denotes the coupling of the electron density in grid i with the electron density in the six neighboring grids.
- $C_{ik} \ge 0$  are determined as a function of the latitude, longitude, and altitude based on the empirical electron density model NeQuick.



• Proposed method: We formulate the problem of reconstructing the ionospheric volume as the following regularized least squares problem:

$$\widehat{\mathbf{x}} = \underset{\mathbf{x} \in \mathbb{R}^n}{\arg \min} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \lambda \|\mathbf{W}\mathbf{x}\|_2^2 + \gamma \sum_{q=1}^h \|\mathbf{R}_q\mathbf{x} - \mathbf{x}_q\|_2^2$$
reference constrain



• Reconstruction: We focus on the reconstruction of 3-D ionosphere density model in the region above Japan at 13:30 UT on May 17, 2019 with 500 GPS ground stations.



Illustration of the observed satellites and GPS ground stations in the region above Japan at 13:30 UT on May 17, 2019. The gray shaded region illustrates the reconstruction volume.



- Ground truth x\*: We conduct simulation-based experiments using the NeQuick model as ground truth x\*.
- Forward model: We construct the forward operator A corresponding to the specified date and time.
- Measurements: We synthesize the TEC measurements by multiplying A with x\*.

relative error = 
$$\|\widehat{\mathbf{x}} - \mathbf{x}^*\|_2 / \|\mathbf{x}^*\|_2$$
(RE)



• Robustness comparison: Our proposed approach, remains robust to model mismatch, whereas modified SIRT is more seriously affected by the measurement error.

$$\tilde{y}_l = y_l \left( \frac{\text{partial TEC}_{l,\text{NeQuick}}}{\text{TEC}_{l,\text{NeQuick}}} \right)^p, \ \forall \ l \in \mathcal{L}$$

Table 1: Relative error (RE) sensitivity to mismatch in partial TEC

| Exponent p | Proposed RE | modified SIRT RE |
|------------|-------------|------------------|
| 1          | 0.0976      | 0.192            |
| 2          | 0.104       | 0.197            |
| 4          | 0.133       | 0.215            |



Right: Comparison of the reconstruction performance from simulated TEC measurements with the modified SIRT method in [9]. The first row show the horizontal slice at elevation 300 km, the second row shows a meridional slice at longitude 135°E and the third row shows the vertical profiles at [135°E, 30°N], [135°E, 35°N], [140°E, 35°N], and [140°E, 40°N].







Above: Comparison of vertical electron density profiles from real data.

## Conclusion



- We develop a robust 3D tomographic imaging framework to estimate the ionospheric electron density using ground-based total electron content (TEC) measurements from GPS receivers.
- We incorporate into the tomographic measurements the TEC readings observed from low-angle satellites that fall outside of the target ionospheric domain.

• We demonstrate through simulations that our framework delivers superior reconstruction of the ionospheric electron density compared to existing schemes. We also demonstrate the applicability of our approach on real TEC measurements.



# Thanks!