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Abstract Methods Main Results
e Purpose: To introduce two novel learning-based motion artifact removal net- e Our two learning-based approaches: We propose two convolutional neural e Results on synthetic data: LEARN-IMG consistently gives the best per-
works (LEARN) for the estimation of quantitative motion- and B0-inhomogeneity- networks (CNNSs) for recovering high-quality quantitative R5 maps from the formance over the synthetic data in our different corruption scenarios, with
corrected R3 maps from motion-corrupted multi-Gradient-Recalled Echo (mGRE) motion-corrupted mGRE images. Both of our methods, referred to LEARN- LEARN-BIO closely following with similar results.
MRI data. IMG and LEARN-BIO, are trained on motion-free mGRE images and their ror—

simulated motion-corrupted counterparts.

e Supervised learning LEARN-IMG:LEARN-IMG follows the traditional su-
pervised training strategy in order to correct the motion on the complex mGRE
images. The high-quality motion-free and B0-inhomogeneity-corrected R
maps can be subsequently computed by applying the standard non-linear least
squares (NLLS) analysis that also accounts for the effect of background B0
field gradients (herein we use Voxel Spread Function (VSF) approach [?]) on
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e Methods: We train two convolutional neural networks (CNNs) to correct mo-
tion artifacts for high-quality estimation of quantitative B0-inhomogeneity-
corrected R5 maps from mGRE sequences. The first CNN, LEARN-IMG,
performs motion correction on complex mGRE images, to enable the sub-
sequent computation of high-quality motion-free quantitative R3 (and any
other mGRE-enabled) maps using the standard voxel-wise analysis or machine-
learning-based analysis. The second CNN, LEARN-BIOQ, is trained to directly
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different MRI applications to produce quantitative maps related to biological e Self-supervised learning LEARN-BIO:LEARN-BIO is trained to directly NLLS LEARN-BIO LEARN-IMG  NLLS LEARN-BIO LEARN-IMG  NLLS LEARN-BIO LEARN-IMG

tissue microstructure in health and disease. map the magnitude-only motion-corrupted mGRE images to motion-free and

mGRE images 5(¢) and B0-inhomogeneity-corrected 25 maps. The key feature of LEARN-BIO e Results on experimental data: The capability of our CNN models is fur-
” is that it is fully self-supervised, in the sense that it is trained using only the ther elaborates on experimental data, showing a practical application of our

| mGRE images and the biophysical model connecting the mGRE signal with approaches on removing real-world motion artifacts and keeping feature de-

biological tissue microstructure. tails. Thanks to the power of our deep neural networks, our approaches

constantly outperform NLLS both qualitatively and quantitatively, providing
3D R5 maps in a matter of seconds as compared with many hours required
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e R’ estimation with biophysical model: R, is one such quantitative map . by NLLS analysis.
that can be estimated from mGRE signals. In the R5 approximation, the > v
mGRE signal from a single voxel can be expressed as: 3 R AR bt Loss
g g > as = B, M

S(t) = Sp-exp(—R; -t —iwt) - F(t), (1)

where t denotes the gradient echo time, Sy = S(0) is the signal intensity at

t =0, and w is a local frequency of the MRI signal. The complex valued func-

tion F'(t) describes the effect of macroscopic magnetic field inhomogeneities Data Generation
on the mGRE signal.

e Challenges: However, involuntary physical motion and subtle anatomical e Motion artifacts simulation procedure: We introduce a general motion Conclusion
fluctuations during the mGRE signal acquisition can lead to undesirable arti- synthesis procedure that generates motion-corrupted mGRE images for train- _ |
facts during the estimation of these quantitative maps. It is therefore impor- ing our CNNs by replacing k-space data of the given motion-free images with ° Con.clusmn:. Both I_-EARN'IMG ?”d LEARN—.BIO can enable the computation
tant to develop methods that reduce the sensitivity of the estimated quanti- the k-space data of its moved counterparts. Examples of motion corrupted of high-quality mOt_'O”‘ and BO—lnhomogenel.ty—corrected R§ maps. LEARN-
tative maps to the motion artifacts in the MR images. images generated by our procedure are shown in the figure below. IMG performs motion correction on mGRE images and relies on the subse-

quent analysis for the estimation of RS maps, while LEARN-BIO directly per-
forms motion- and B0O-inhomogeneity-corrected R5 estimation. Both LEARN-
IMG and LEARN-BIO jointly process all the available gradient echoes, which
enables them to exploit spatial patterns available in the data. The high com-
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e Our approaches: Deep learning (DL) methods have also been recently in-

troduced for motion-correction in MRI due to their speed and quality of re- P N
construction. Despite the recent activity, DL is yet to be investigated in the ’!:" i
context of quantitative B0-inhomogeneity-corrected estimation of R5 maps outational speed of LEARN-BIO is an advantage that can lead to a broader
from mGRE signals. One of the key challenges in this context is the sensitivity ko clinical application.
of the quantitative maps to the motion artifacts. % E15 3
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