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A common inverse problem

e A common inverse problem model
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The inverse problem could be formulated as an optimization problem

* Afeasible optimization framework to solve the problem
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» N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends in Optimization, vol. 1, no. 3, pp. 123-231, 2014.
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Guideline of the talk

* Large scale optimization problem

x=argmin{f(x)} with f(x)=d(z)+ %{rl(a))—k---—I—Tk(az)—l—---—l—rK(a:)}
xcR™

Nonconvex
« -{ Alg: SPGM HAIg mgnProx]—{ task ]

Basellne Proposed Slmulation
algorithm algorithm results
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Proximal gradient method could minimize the non-differentiable functions

* Modeled optimization problem

xr= a:rngegrin {f(x)} with f(x)=d(x)+r(x)

* J. J. Moreau, “Proximit’e et dualit’e dans un espace hilbertien,” Bull. Soc. Math. France, vol. 93, pp. 273—-299, 1965.
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Proximal gradient method could minimize the non-differentiable functions

* Modeled optimization problem

xr= a:rngegrin {f(x)} with f(x)=d(x)+r(x)

*  Proximal gradient method (PGM)

s=x'"t —4Vd(z')
xt proxw(avt_1 —Vd(zt™1))
. . . 1
Proximal gradient mapping rt = proxfyr(,g) L arg min {5 Haz — ,sH% + ’yr(m)}

. ) xrcR™
Proximal operation

* J. J. Moreau, “Proximit’e et dualit’e dans un espace hilbertien,” Bull. Soc. Math. France, vol. 93, pp. 273—-299, 1965.



Proximal average is a good estimation of the true proximal gradient mapping

e Large scale optimization problem

f(®) =% S fr(@)

x=argmin{f(x)} with
xrcR"™

fr(®)=d(z)+ri()

+ Bauschke, Heinz H., et al. "The proximal average: basic theory." SIAM Journal on Optimization 19.2 (2008): 766-785.
* Yu, Yao-Liang. "Better approximation and faster algorithm using the proximal average." Advances in neural information processing systems. 2013.
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Stochastic proximal gradient method could approximate the proximal average

* Stochastic proximal gradient method
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Could be time consuming and
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» H. Robbins and S. Monro, “A stochastic approximation method,” The Annals of Mathematical Statistics, vol. 22, no. 3, pp. 400-407, September 1951.

19



Stochastic proximal gradient method could approximate the proximal average

* Stochastic proximal gradient method

1 & 1 &
P(x) £ - > Pr(x) ~ P() £ 5> P (@)

| k=1 b=1
i 4
| |
v I
Could be time consuming and :
. B< K I
computational resource ~  ____— > |

demanding for K components

» H. Robbins and S. Monro, “A stochastic approximation method,” The Annals of Mathematical Statistics, vol. 22, no. 3, pp. 400-407, September 1951.

20



Stochastic proximal gradient method could approximate the proximal average

* Stochastic proximal gradient method

L]
Sont 1 & o> N
| P(x)= e > Pr(x) ~ |P(@) = Ezpkb(w)

D T T =1
I &
| |
v ]
Could be time consuming and :
. B K 0
computational resource ~  ____— > |

demanding for K components

» H. Robbins and S. Monro, “A stochastic approximation method,” The Annals of Mathematical Statistics, vol. 22, no. 3, pp. 400-407, September 1951.

21



Stochastic proximal gradient method could approximate the proximal average

* Stochastic proximal gradient method
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SPGM could work parallelly

@)=l @b @) )

Pk1 (w) Pkb (ZU) PkiB (:13)
| I I
i ! :
> 1 B D ——— H
Pl@)2 =) Pr (@)
b=1
~ I -
Transmission of P * Dimension of P
is frequent F———=—— 2 is high
I_ 3:_<—_P£_:ct 1

O

Significant communication cost !!!

26



signProx is more efficient than SPGM

f@)=={ @@t +fx@) )

Seide, Frank, et al. "1-bit stochastic gradient descent and its application to data-parallel distributed training of speech dnns." Fifteenth Annual Conference of the International

Speech Communication Association. 2014.
J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar, “signSGN: Compressed optimization for non-convex problems,” in Proc. 35th Int. Conf. Machine Learning

(ICML), Stockholm, Sweden, July 2018.
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SPGM uses the true direction to update while signProx only uses the sign

* Stochastic proximal gradient method (SPGM)

» Update rule: | 2! Pz :

e 1-bit stochastic proximal gradient method (signProx)
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signProx could achieve the comparable performance with SPGM

e Convergences rate tells how fast you can reduce you loss function

» Convergence conclusion for signProx:
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» Convergence conclusion for SPGM:
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Check the performance of SPGM and signProx on a phase retrieval model

* Nonconvex phase retrieval task
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Check the performance of SPGM and signProx on a phase retrieval model

* Nonconvex phase retrieval task
Information about the

sign is lost :
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e  Optimization objective function
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Simulate the stochasticity of the proximal gradient mapping by adding noise

» Stochastic simulation of proximal gradient mapping

R Noise
P=P+p(e)
A
— —
True proximal mapping Dense stochasticity Sparse stochasticity

P1 P2
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signProx outperforms SPGM in the some sparse stochasticity scenario

Dense stochasticity scenario
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signProx outperforms SPGM in the some sparse stochasticity scenario

normalized loss

Dense stochasticity scenario
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Conclusions

Proposed a compressed proximal gradient method signProx to solve
the low efficiency problem of SPGM in a large scale optimization
scenario.

Proved the convergence of the signProx under nonconvex assumption
and showed it achieves the comparable theoretical performance with
SPGM.

Simulated a phase retrieval problem and showed signProx has a
comparable performance with SPGM and in some scenario it even
outperforms SPGM.



Acknowledgements

* Support
» National Science Foundation under Grant No. 1813910.

e Lab homepage
» https://cigroup.wustl.edu/

* Follow us
» https://twitter.com/wustlcig

Ulugbek Kamilov Xiaojian Xu

Guangxiao Song

38


https://cigroup.wustl.edu/
https://twitter.com/wustlcig

Thanks & questions?

39



